
Improved Outer Loop Vectorization in LLVM

Summary

In most loop nests, vectorizing the inner-most loop is the best
thing to do. However, there are exceptions where outer-loop
vectorization is a better choice (e.g. for matrix multiplication).
Currently, outer-loop vectorization is only supported in
LLVM through the VPlan-native path. The VPlan-native
path is an alternative vectorization code-path that is purely
pragma/metadata driven and has currently no memory-
dependency checks or cost-model. The quality of the emitted
code is also sub-optimal: there is no scalarization and every
memory access is done using gathers/scatters.
How to improve this code-path? How can uniform or consecu-
tive memory accesses be identified in outer-loop vectorization?
How to avoid unnecessary vectorization of instructions like the
address calculation of consecutive accesses?

Vectorization in LLVM:
Classic and Native Paths

processLoop()

Legality Analysis
(using LoopAccessAnalysis)

(Very Basic) Legality Analysis

LVP::plan() goes from IR
to if-conv. VPlan with recipes...

HCFGBuilder builds a VPlan
that maps the original IR

VPInstructionsToRecipes

VPlan-to-VPlan:
Scalarization, (If-Conv.?), ...

VPlan-to-VPlan opts/cleanups

VPlan::execute()

native path

classic vectorizer

shared path

Le
ga

lit
y

V
Pl

an
Co

ns
tr

uc
tio

n
O

pt
.

A
pp

ly
Ve

ct
.

Scalar

for (size_t i = 0; i < N; i++) {
float sum = 0.;
for (size_t j = 0; j < M; j++) {

float x = B[j] // Access b)
* C[j][i]; // Access c)

sum += x;
}
A[i] = sum;

}

Inner-Loop Vectorization

for (size_t i = 0; i < N; i++) {
float sum = 0.;
// Pseudo - Vectorized inner loop:
for (size_t j = 0; j < M; j += 8) {

float [8] vec1 = B[j..j+8];
float [8] vec2 =

strided_load (&C[j][i], N); // Slow!
sum += reduce_add (vec1 * vec2 );

}
A[i] = sum;

}

Outer-Loop vectorization

// Pseudo - Vectorized outer loop:
for (size_t i = 0; i < N; i += 8) {

float [8] sum = { 0., ... };
for (size_t j = 0; j < M; j++) {

float [8] vec1 = dup(B[j]);
float [8] vec2 = C[j][i..i+8];
sum += vec1 * vec2;

}
A[i..i+8] = sum;

}

• Striding Accesses become Consecutive
• Element-Wise Add instead of Reduction

Find Uniform/Consec. Accesses

LoopAccessAnalysis looks for SCEVAddRecExprs to find con-
secutive accesses. When doing outer-loop vectorization, this is
not enough. For example, the SCEV of access c) above is:

{{%C,+,4}<%i_loop>,+,(4 * %L)}<%j_loop>
The approach here is to "unpeel" SCEV expressions that do not
change the distance between steps of the vectorized loops. This
means that SCEVAdd{Expr/RecExpr}s can be unpeeled if the
step/rhs operands are loop invariant.

Find Scalarizeable Instructions

Current limitation: Only works if the def-use chain in the
loop body has no cycles.
Proposed solution:
• Keep existing idea: Scalarize if all uses are scalar
• Recursively go up operands of scalarized instrs
• If only non-scalar use is a loop-header PHI,

assume it can be scalarized!
• If all uses of PHI became scalar, all is fine!
• Otherwise, rollback.

Example (Use Graph):
inner_loop :

%j = phi i64 [0, ...] , [%inc , % inner_loop ]
%ptr = getelementptr float , ptr %A, i64 %j
%a = load float , ptr %ptr
% used_outside = foo (%a)
[...]
%inc = add i64 %j, 1
%con = icmp eq i64 %inc , %M
br %con , %inner_loop , % inner_exit

j
1.)

ptr

a

foo

inc

con

j
2.)

ptr

a

foo

inc

con

j
3.)

ptr

a

foo

inc

con

The load a uses ptr as scalar,
and so does con use inc. There
is a def-use cycle between j and
inc. When visiting j, assume it
can be scalarized. inc is has no
other non-scalar user, so the
assumption was fine!

Visit Order: foo → a → ptr
→ j → con → inc → j

Alternative solution would be to have vectorization-requiring
"sinks" (like in DCE, e.g. reductions or value operand of
store), and to recursively go up operands.

Results for Matrix Multiplication
on aarch64 (Graviton3e)

 0.5

 1

 2

 4

 8

Small Mat. Large Mat.

S
p
e
e
d
U

p
 (

h
ig

h
e
r 

is
 b

e
tt

e
r)

1
Scalar

ILV
Old OLV

New OLV

Small Matrix: 105 Entries (Everything fits in L1 Cache, Tiling),
Large Matrix: 108 Entries

Conclusion and Future Work

Conclusion:
• Very large perf. gains possible!
• Current upstream functionality of very limited use
• Can be improved: memory dep. checks, more flexible code, ...

Future Work:
• Memory Dependency Analysis with runtime pointer checks?
• VPlan-based Cost Model?
• Ability to compare costs of VPlans with different "root" loops?

Related Work

• "RV: A Unified Region Vectorizer for LLVM" by Simon Moll
was a out-of-tree vectorizer capable of outer-loop vectorization.

• "Extending LoopVectorize to Support Outer Loop
Vectorization Using VPlan" by Intel is the foundation for the
improvements suggested here.

Contact Information
• Web: SiPearl.com
• lou.knauer@sipearl.com
• etienne.renault@sipearl.com

https://sipearl.com/

